jcst.net
当前位置:首页 >> 不定积分∫sinxCos3xDx=?,∫√x(x2+1)Dx=? >>

不定积分∫sinxCos3xDx=?,∫√x(x2+1)Dx=?

解:用“凑”微分的方法求解。 原式=-∫(cosx)^(-3/2)d(cosx)=2(cosx)^(-1/2)+C。 供参考。

你不用试了,这个不定积分没有初等函数的解.一般换元和分部积分做不出来的都没有初等函数的解. 看看题目是要求什么,如果过程中有不定积分,看看是不是有其他方法跳过不定积分. 如果是求定积分,解特殊区间的定积分,比如0到正无穷,那么用积分变换的...

如图

换元,t = arcsinx, dx = cost dt I = ∫ t sin²t dt = (1/2) ∫ t (1﹣cos2t) dt = (1/4) t² ﹣(t/4)sin2t + (1/4) ∫ sin2t dt = (1/4) t² ﹣(t/4)sin2t ﹣ (1/8) cos2t + C = (1/4)arcsin²x ﹣(1/2) x √(1-x²) arcsinx...

令t=tan(x/2),则x=2arctant,所以dx=2/(1+t^2)dt 由万能公式:sinx=2tan(x/2)/(1+(tan(x/2))^2)=2t/(1+t^2), 则原式=(1/2)∫d(t+1/2)/[(t+1/2)^2+(根号3/2)^2] =(1/根号3)arctan[2(t+1/2)/根号3]+C =(1/根号3)arctan[2(arctan(x/2)+1/2)/根号3]+C

这个我不知道发图片!我说下思路吧!先把分母sinx变成2sinx/2cosx/2 然后三次方后就可以和分子约去cosx/2的三次方!!简化后的式子直接分部积分(cosx/2/sinx/2^3这个整体是一个函数的导数),只要一步就能出来答案!!

∫sinx/cos^3x dx =-∫1/cos^3x dcosx =1/(2cos^2x)+C

设u=cosx 则,du=-sinxdx 原式=∫-1/(1+u²)du =-arctanu+C =-arctan(cosx)+C

网站首页 | 网站地图
All rights reserved Powered by www.jcst.net
copyright ©right 2010-2021。
内容来自网络,如有侵犯请联系客服。zhit325@qq.com